If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+16x+4=0
a = 9; b = 16; c = +4;
Δ = b2-4ac
Δ = 162-4·9·4
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{7}}{2*9}=\frac{-16-4\sqrt{7}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{7}}{2*9}=\frac{-16+4\sqrt{7}}{18} $
| b*2=b+45 | | 9x^2+16x=4 | | 4x-1=1/8 | | x/30=91 | | 175m-100m+43,425=49,500-150m | | 5(x+3)-10=9x-9 | | 6^x-9=5x+2 | | 8y^2-24y+2=0 | | N+4n=20;5 | | (6x-1)+76=180 | | 6.5-0.1q=20-0.2q | | 7,50+0,75x=10+0,5x | | 26x+24=-39x-$ | | 8×k÷3=32 | | 534=18w+38 | | 0.12y+0.25=-0.35 | | h=-16^2+46+6 | | 6×m÷7=30 | | -10=35y | | E^(2-3x)=125 | | (2x+5)^2+32=-4 | | 60+26x=180 | | 0,05x+52=65 | | (6-3)=(2x-4x)=5 | | 2x+76=5x-23 | | 2x+8•2=20 | | X^2+(x+1)^2=421 | | 16=u/4-8 | | Y-810=y | | 7m+4=m+22 | | (4x+3)^2=289 | | 3(x+5)=3/5 |